Integrability of Riccati equations and the stationary KdV equations

نویسنده

  • R. Z. Zhdanov
چکیده

Using the S.Lie’s infinitesimal approach we establish the connection between integrability of a one-parameter family of the Riccati equations and the stationary KdV hierarchy. In this paper we will suggest a method for integrating a one-parameter family of the Riccati equations ux + u 2 = f(x, λ) (1) based on their Lie symmetries. Here f(x, λ) = λ + λVn−1(x) + · · ·+ λV1(x) + V0(x) and λ is an arbitrary real parameter. We recall the principal idea of application of Lie group methods to integrating the Riccati equation (1). Suppose it admits a one-parameter transformation group having the infinitesimal operator X = ξ(x, u, λ) ∂ ∂x + η(x, u, λ) ∂ ∂u . Then making a change of variables (x, u) → (x̃, ũ) transforming X to become X̃ = ∂ ∂x̃ (which is always possible) reduces the equation under study ∗e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 M ay 2 00 5 What does integrability of finite - gap / soliton potentials mean ?

In the example of the Schrödinger/KdV equation we treat the theory as equivalence of two concepts of Liouvillian integrability: quadrature integrability of linear differential equations with a parameter (spectral problem) and Liouville’s integrability of finite-dimensional Hamiltonian systems (stationary KdV–equations). Three key objects in this field: the explicit Ψ-function, trace formula and...

متن کامل

1 7 A pr 2 00 6 What does integrability of finite - gap or soliton potentials mean ?

In the example of the Schrödinger/KdV equation we treat the theory as equivalence of two concepts of Liouvillian integrability: quadrature integrability of linear differential equations with a parameter (spectral problem) and Liouville’s integrability of finite-dimensional Hamiltonian systems (stationary KdV–equations). Three key objects in this field: new explicit Ψ-function, trace formula and...

متن کامل

What does integrability of finite-gap or soliton potentials mean?

In the example of the Schrödinger/KdV equation, we treat the theory as equivalence of two concepts of Liouvillian integrability: quadrature integrability of linear differential equations with a parameter (spectral problem) and Liouville's integrability of finite-dimensional Hamiltonian systems (stationary KdV equations). Three key objects in this field-new explicit Psi-function, trace formula a...

متن کامل

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

Integrable Systems and Riemann Surfaces Lecture Notes (preliminary version)

1 KdV equation and Schrödinger operator 2 1.1 Integrability of Korteweg – de Vries equation . . . . . . . . . . . . . . . . . . 2 1.2 Elements of scattering theory for the Schrödinger operator . . . . . . . . . . . 5 1.3 Inverse scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Dressing operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997